MATH 3323 Linear Algebra Problem Set 4 Due: March 23, 2020

On separate sheets of paper please solve all the problems below.

- Consider the set of all ordered pairs of real numbers (i.e. R²) with the following operations of "addition" and "scalar multiplication": (x₁, y₁) + (x₂, y₂) = (y₁ + y₂, x₁ + x₂) and k(x, y) = (kx, ky).
 Decide whether or not each of the vector space axioms is true for R² with these operations. Go through all 10 axioms. If an axiom is true, prove it. If an axiom is false, give a concrete counterexample (with numbers/vectors) showing it is
 - false.
- 2. Determine which if the following are subspaces of P_2 (the vector space of all polynomials of degree less than or equal to two).
 - a) The set of all polynomials with $a_0 = 0$ (Note: form $p(x) = a_1 x + a_2 x^2$).
 - b) The set of all polynomials $p(x) = a_0 + a_1x + a_2x^2$ satisfying p(1) = 1.
- 3. Let V denote the set of all 2x2 matrices, and let W be the subset of V consisting of all 2x2 matrices having trace zero. Is W a subspace of V? Prove your answer. Feel free to use known facts about trace.
- 4. Show that vectors $v_1 = (2,2,2)$, $v_2 = (0,0,3)$ and $v_3 = (0,1,1)$ span \mathbb{R}^3 , and express the vector (-1,2,0) as the linear combination of the three vectors.
- 5. Determine if the following are linearly independent subsets:
 - a) Determine whether or not vectors (1,-1,1,1), (3,0,1,1), (7,-1,2,1) form a linearly independent subset of R^4 .
 - b) Let $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$. Do A, B, and C form a linearly independent subset of M_{2x2} ?
 - c) Determine if $5, x^2 6x, (3 x)^2$ form a linearly independent subset of $F(-\infty, \infty)$.
- 6. Are the following bases? Why or why not.
 - a) {(1,0,2), (1,2,3), (-2,1,1)} in \mathbb{R}^3 ?
 - b) $\{x^3 + 2x^2, x + 3, -2\}$ in P_3 ?
 - c) {(1,-1), (-2,2)} in \mathbb{R}^2 ?

- 7. Determine the dimension of and basis for the solution space of the system: $x_1 - 2x_2 - x_3 = 0$ $2x_1 + x_2 + 3x_3 = 0$
- 8. For each of the following, find the dimension of the subspace of the given vector space:
 - a) Vector space: R^3 ; subspace: all vectors of the form $\begin{bmatrix} a-b\\b\\a+b \end{bmatrix}$
 - b) Vector space: R^3 ; subspace: Span{(2,3,0),(1,0,3),(3,3,3),(-1,-3,3)}