MATH 3323 Linear Algebra Problem Set 5 Due April 3, 2020

1. Let $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$

- a) Find the general solution to Ax = 0
- b) Find a basis for the row space of A.
- c) Find a basis for the column space of A.
- d) Find a basis for the nullspace of A.
- e) Find rank(A)
- f) Find nullity(A)
- 2. Consider the bases $B = [u_1, u_2]$ and $B' = [v_1, v_2]$ for R^2 where $u_1 = \begin{bmatrix} 2\\ 2 \end{bmatrix}, u_2 = \begin{bmatrix} 4\\ -1 \end{bmatrix}, v_1 = \begin{bmatrix} -2\\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 6\\ 1 \end{bmatrix}$
 - a) Find the transition matrix from B' to B.
 - b) Find the transition matrix from B to B'.
 - c) Compute the coordinate vector $[w]_B$ where $[w]_{B'} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$
- 3. Consider the differential equation y''-4y'+5y = 0
 - a) Verify that each, $\{e^{2x} \sin x, e^{2x} \cos x\}$, is a solution to the differential equation.
 - b) Test if the solutions are linearly independent (use Wronskian).
 - c) If the set is linearly independent, write the general solution of the differential equation.
- 4. Let u = (2,-1,3), v = (1,-4,1), w = (1,1,2). Find each of the following:
 - a) 2u v
 - b) The angle between u and v.
 - c) ||2u 3v||
 - d) A unit vector having the same direction as w.
 - e) $proj_u v$
 - f) $w \cdot (u 2w)$
 - g) d(u,v)
- 5. Compute the inner product $\begin{bmatrix} -1 & -2 \end{bmatrix}$

a.
$$\langle u, v \rangle$$
: $u = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}, v = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$
b. $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ with $f(x) = x$ and $g(x) = e^x$.

- 6. Find the k values so that u and v are orthogonal: u = (k, k, 1), v = (k, 5, 6)
- 7. Let $v_1 = (1, -1, 2, -1), v_2 = (-2, 2, 3, 2), v_3 = (1, 2, 0, -1), v_4 = (1, 0, 0, 1)$
 - a. Verify that $\{v_1, v_2, v_3, v_4\}$ form an orthogonal basis for R^4 .
 - b. Turn $\{v_1, v_2, v_3, v_4\}$ into an orthonormal basis.
 - c. Express (1,1,1,1) as a linear combination of $\{v_1, v_2, v_3, v_4\}$.
- 8. Let $u_1 = (1,1,1)$, $u_2 = (-1,1,0)$, $u_3 = (1,2,1)$, use Gram-Schmidt process to find orthogonal basis for the subspace spanned by u_1, u_2, u_3