Practice Problems Exam 2 Solutions

1. Consider the bases
$$B = [u_1, u_2]$$
 and $B' = [v_1, v_2]$ for R^2 where
 $u_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix} u_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix} v_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix} v_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$
a) Find the transition matrix B' to B.
 $\begin{bmatrix} 1 & -2 & -7 & -5 \\ -3 & 4 & 9 & 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 5 & 3 \\ 0 & 1 & 6 & 4 \end{bmatrix}$
 $P = \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix}$
b) Find the transition matrix from B to B'.
 $\begin{bmatrix} -7 & -5 & 1 & -2 \\ 9 & 7 & -3 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & -3/2 \\ 0 & 1 & 3 & 5/2 \end{bmatrix}$
 $P^{-1} = \begin{bmatrix} 2 & -3/2 \\ 3 & 5/2 \end{bmatrix}$

c) Compute the coordinate vector $\begin{bmatrix} w \end{bmatrix}_B$ where $w = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$= \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 13 \\ 16 \end{bmatrix}$$

2. Let u = (1,2,3), v = (-3,4,-1) and w = (0,-1,1). Find

a)
$$u - 2w = (1,4,1)$$

b) $u \cdot v = 2$

c)
$$w \times v(-3, -3, -3)$$

d)
$$||3u + w|| = \sqrt{134}$$

e) $proj_u w = \left(\frac{1}{14}, \frac{1}{7}, \frac{3}{14}\right)$

f) A unit vector in the opposite direction of $u + v = \left(\frac{2}{\sqrt{44}}, \frac{-6}{\sqrt{44}}, \frac{-2}{\sqrt{44}}\right)$

- g) A vector orthogonal to both u and v = (-14, -8, 10).
- h) Find scalars k, such that $||kw|| = 12 \cdot k = \frac{12}{\sqrt{2}}$
- i) Find the area of the parallelogram determined by u and $v = 6\sqrt{10}$.
- j) Find the volume of the parallelepiped determined by u, v and w = 18.
- 3. If $u \cdot v = u \cdot w$, is v = w? (Assume they are all non-zero vectors). No, let u = (1,1,1), v = (1,0,0) and w = (0,0,1).

4. Let $P_1(2,0,1)$, $P_2(-1,5,3)$, $P_3(5,2,0)$. Find the area of the triangle having vertices P_1, P_2, P_3 . $A = \frac{1}{2} ||P_1P_2 \times P_2P_3|| = \frac{1}{2}\sqrt{531}$

5. Find
$$u \cdot v$$
 given that $||u + v|| = 1$ and $||u - v|| = 5$.
 $||u + v||^2 = (u + v) \cdot (u + v) = ||u||^2 + ||v||^2 + 2(u \cdot v)$ and
 $||u - v||^2 = (u - v) \cdot (u - v) = ||u||^2 + ||v||^2 - 2(u \cdot v)$
Subtracting the two equations gives:
 $||u + v||^2 - ||u - v||^2 = 4(u \cdot v) \Rightarrow$
 $\frac{||u + v||^2 - ||u - v||^2}{4} = \frac{(1)^2 - (5)^2}{4} = u \cdot v = -6$

6. Are the following linearly independent?

a)
$$\{(1,3,2), (-4,2,1), (5,-1,0)\}$$
 det $\begin{bmatrix} 1 & -4 & 5 \\ 3 & 2 & -1 \\ 2 & 1 & 0 \end{bmatrix} \neq 0$ so these vectors are linear

independent.

b)
$$\{3-x+x^2, x^2+1, 7x-2\} W = \det \begin{bmatrix} 3-x+x^2 & x^2+1 & 7x-2\\ -1+2x & 2x & 7\\ 2 & 2 & 0 \end{bmatrix} \neq 0$$
 therefore

linearly independent

- c) $\{(2,4), (0,9), (-1,4), \text{ too many vectors so linearly dependent} \}$
- 7. Compute ||f|| given the inner product is defined as $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$ with $f(x) = e^x$. $\langle f,f \rangle = \int_0^1 f(x)f(x)dx = \int_0^1 e^{2x}dx = \frac{e^{2x}}{2} = \frac{e^2}{2} - \frac{1}{2}$ $||f|| = \sqrt{\frac{e^2}{2} - \frac{1}{2}}$
- 8. Determine whether or not the following sets are vector spaces under the given operations.a) The set of all triples of real numbers (x, y, z) with the operations
 - (x, y, z) + (x', y', z') = (y + y', x + x', z + z') and k(x, y, z) = (kx, ky, kz)No, fails Axioms 3 (fails others, but as soon as one fails it is not a vector space)

b) The set of all 2x2 matrices of the form $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}$ with addition defined by

$$\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+c & 1 \\ 1 & b+d \end{bmatrix}$$
 and scalar multiplication defined by
$$k \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = \begin{bmatrix} ka & 1 \\ 1 & kb \end{bmatrix}.$$

Satisfies all axioms (would need to show that all ten Axioms are satisfied) so yes it is a vector space.

- 9. Determine which if the following are subspaces.
 - a) All vectors in R³ of the form (a,b,c) where a, b and c are integers.
 If you add two integers you will still get an integer so it is closed under addition. But if you multiple by a non-integer k, you will not get an integer vector thus it is not closed under scalar multiplication so it is not a subspace
 - b) All polynomials $p(x) = a_0 + a_1x + a_2x^2$ for which $a_0 = 0$. $q(x) = b_1x + b_2x^2$ and $r(x) = a_1x + a_2x^2$, $q(x) + r(x) = (a_1 + b_1)x + (a_2 + b_2)x^2$ so closed under addition $kq(x) = kb_1x + kb_2x^2$ so closed under scalar multiplication Thus forms a subspace
 - c) All invertible 2x2 matrices. The addition of two invertible matrices is not necessarily invertible. For example let A=I and B=-I. Then A+B=0 which is not invertible.
- 10. Determine whether the solution space of the system Ax = 0 is a line through the origin, a plane through the origin or the origin only. Give the equation for the line or plane.

	2	-1	7		2	-1	7	0		1	4	6	0	
A =	0	1	-5	$Ax = 0 \Longrightarrow$	0	1	-5	0	\rightarrow	0	1	-5	0	No free variable, so
	1	4	3		1	4	3	0		0	0	-44	0_	

only trivial solution - the origin

- 11. Are the following bases?
 - a) $\{(3,0,2), (-1,5,3), (2,-1,5), (1,1,1)\}$ in \mathbb{R}^3 ? No there are four vectors so they can't be linearly independent so they do not form a basis.
 - b) $\{x^2, x, 7+x\}$ in P_2 ? The Wronskian is not zero so these vectors are linearly independent. P_2 is three-dimension and we have vectors so linearly independence implies they form a basis.
 - c) $\{(1,-1), (1,3)\}$ in \mathbb{R}^2 ? These vectors are linearly independent (the determinant is not zero) therefore they form a basis.

12. Determine the dimension and basis for the solution space of the following system.

$$x_{1} - 2x_{2} - x_{3} = 0$$

$$2x_{1} + x_{2} + 3x_{3} = 0$$

$$\begin{bmatrix} 1 & -2 & -1 & 0 \\ 2 & 1 & 3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
Solution is $x_{3} = t, x_{2} = -t, x_{1} = -t = t \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = tv_{1}$
Dim=1 because one free variable. The basis would be

13. Given the following matrix, find bases for its row space, column space and nullspace. Determine the rank and nullity.

	4	3	-1		4	3	-1	0	[1	-2	-3	0	
A =	-1	2	3	\Rightarrow	-1	2	3	0 -	$\rightarrow 0$	1	1	0	
	5	2	-3		5	2	-3	0	0	0	0	0	

Solution is $x_3 = t, x_2 = -t, x_1 = t$

Basis for rowspace is $\begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$, Basis for column space is $\begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$ Basis for nullspace is $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, so rank(A)=2 and nullity(A)=1

- 14. Which of the following sets are orthogonal with respect to the Euclidean norm? Are they orthonormal?
 - a) $\{(1,-1,1), (2,0,-2), (-1,2,3)\}$ not orthogonal
 - b) $\{(1/\sqrt{2}, -1/\sqrt{2}), (1/\sqrt{2}, 1/\sqrt{2}) \text{ orthogonal and orthonormal} \}$
- 15. Use Gram-Schmidt process to transform the following basis into an orthonormal set. $\{(2,1,0), (-1,0,4), (3,-2,1)\}$ $u_1 = (2,1,0)$ $u_2 = v_2 - proj_u v_2 = (-1/5, 2/5, 4)$ $u_3 = v_3 - proj_{u_1}v_3 - proj_{u_2}v_3 = (116/81, -232/81, 29/81)$

Normalize each by dividing by the norm to form an orthonormal set