
Practice Problems Exam 2 Solutions 
 

1. Consider the bases ],[ 21 uuB  and ],[' 21 vvB  for 2R where  
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a) Find the transition matrix B’ to B. 
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b) Find the transition matrix from B to B’. 
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c) Compute the coordinate vector Bw][ where 
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2. Let )3,2,1(u , )1,4,3( v and )1,1,0( w . Find 

a) )1,4,1(2  wu  
b) 2 vu  
c) )3,3,3(  vw  

d) 1343  wu  
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f) A unit vector in the opposite direction of vu  
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g) A vector orthogonal to both u and v )10,8,14(  . 

h) Find scalars k, such that 12kw .
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i) Find the area of the parallelogram determined by u and v 106 . 
j) Find the volume of the parallelepiped determined by u, v and w 18 .  

 
3. If wuvu  , is wv  ? (Assume they are all non-zero vectors). No, let )1,1,1(u , 

)0,0,1(v and )1,0,0(w . 



4. Let )1,0,2(1P , )3,5,1(2 P , )0,2,5(3P . Find the area of the triangle having 

vertices 32 ,,
1
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5. Find vu   given that 1 vu and 5 vu . 
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Subtracting the two equations gives: 
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6. Are the following linearly independent? 

a) {(1,3,2), (-4,2,1), (5,-1,0)} 0
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b) }27,1,3{ 22  xxxx 0

022

7221

2713

det

22





















 xx

xxxx

W therefore 

linearly independent 
c) {(2,4), (0,9),(-1,4), too many vectors so linearly dependent 

 

7. Compute f  given the inner product is defined as
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8. Determine whether or not the following sets are vector spaces under the given operations. 

a) The set of all triples of real numbers ),,( zyx with the operations 
)',','()',','(),,( zzxxyyzyxzyx  and ),,(),,( kzkykxzyxk   

No, fails Axioms 3 (fails others, but as soon as one fails it is not a vector space) 



b) The set of all 2x2 matrices of the form 
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Satisfies all axioms (would need to show that all ten Axioms are satisfied) so yes 
it is a vector space. 

 
9. Determine which if the following are subspaces.   

a) All vectors in 3R of the form (a,b,c) where a, b and c are integers. 
If you add two integers you will still get an integer so it is closed under addition. But 
if you multiple by a non-integer k, you will not get an integer vector thus it is not 
closed under scalar multiplication so it is not a subspace 

b) All polynomials 2
210)( xaxaaxp  for which 00 a . 

2
21)( xbxbxq  and 2

21)( xaxaxr  ,  
2

2211 )()()()( xbaxbaxrxq  so closed under addition 
2

21)( xkbxkbxkq  so closed under scalar multiplication 
Thus forms a subspace 

c) All invertible 2x2 matrices. The addition of two invertible matrices is not necessarily 
invertible.  For example let A=I and B=-I.  Then A+B=0 which is not invertible. 

 
10. Determine whether the solution space of the system 0Ax is a line through the origin, a 

plane through the origin or the origin only. Give the equation for the line or plane. 
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0Ax No free variable, so 

only trivial solution - the origin 
 

11. Are the following bases? 
a) {(3,0,2), (-1,5,3), (2,-1,5), (1,1,1)} in 3R ? No there are four vectors so they can’t 

be linearly independent so they do not form a basis. 

b) }7,,{ 2 xxx  in 2P ? The Wronskian is not zero so these vectors are linearly 

independent.  2P is three-dimension and we have vectors so linearly independence 

implies they form a basis. 

c) {(1,-1), (1,3)} in 2R ? These vectors are linearly independent (the determinant is 
not zero) therefore they form a basis. 
 

 



12. Determine the dimension and basis for the solution space of the following system. 
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Solution is 1123
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Dim=1 because one free variable. The basis would be 
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13. Given the following matrix, find bases for its row space, column space and nullspace.  

Determine the rank and nullity. 
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Solution is txtxtx  123 ,,  

Basis for rowspace is [1 -2 3], [0 1 1], Basis for column space is 
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Basis for nullspace is
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14. Which of the following sets are orthogonal with respect to the Euclidean norm?  Are they 

orthonormal? 
a) {(1,-1,1), (2,0,-2), (-1,2,3)}not orthogonal 

b) )2/1,2/1(),2/1,2/1{(  orthogonal and orthonormal 
 

15. Use Gram-Schmidt process to transform the following basis into an orthonormal set. 
{(2,1,0), (-1,0,4), (3,-2,1)} 

)81/29,81/232,81/116(
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 Normalize each by dividing by the norm to form an orthonormal set 


