MATH 3323 Linear Algebra Practice Problems Exam 1

1. Solve the system

 $\begin{cases} x_2 + 4x_3 = -5\\ x_1 + 3x_2 + 5x_3 = -2\\ 3x_1 + 7x_2 + 7x_3 = 4 \end{cases}$

- 2. Give an example of an inconsistent system with two equations and three unknowns.
- 3. Let $A = \begin{bmatrix} 1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8 \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Show that Ax = b does not have a solution

for all possible b and determine the set of all b for which Ax = b does have a solution.

4. Determine if the following system has a non-trivial solution.

$$\begin{cases} x_1 & -3x_2 & +7x_3 & = 0\\ -2x_1 & +x_2 & -4x_3 & = 0\\ x_1 & +2x_2 & +9x_3 & = 0 \end{cases}$$

- 5. Let $A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$. Compute $(3A + B)^T$, CA, $(C^{-1})^T$, (B A)C and $tr(C^3)$ if possible. If not, explain.
- 6. If the second column of B is all zeros, what can you say about the second column of AB? Explain your reasoning.
- 7. Is the following equality true? $(A+B)(A-B) = A^2 B^2$
- 8. Show that if *ABCD* is invertible, then $(ABCD)^{-1} = D^{-1}C^{-1}B^{-1}A^{-1}$.

9. Find the inverse of
$$A = \begin{bmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{bmatrix}$$
 if it exists. If not, explain.

- 11. Compute the following determinants using known theorems (not cofactor expansion). Justify your answers

	-				•			
	3	5	-8	4				
	0	-2	3	-7				
	0	0	1	5				
	0	0	0	4 - 7 5 2				
	0	2	4	-2				
	1	3	-1	4				
	0	0	3	6				
	1	2 3 0 3	-1	6				
						_		
	Let	<i>A</i> =	0	-1	0	1		
12.			1	0	-1	0		
			0	1	0	-1		
			-1	0	1	0		
a) Create an elementary matrix E_1 th								

- a) Create an elementary matrix E₁ that will swap R₂ and R₄.
 b) Create an elementary matrix E₂ that multiplies R₃ by -6.
- c) Create an elementary matrix E_3 that adds $4R_2$ to R_1 .
- d) What is the result of multiplying E_1, E_2 and E_3 (in that order) to A?
- 13. Solve the system using LU-factorization. State your L and your U matrices. $2x_1 + x_2 = 4$

$$x_2 - x_3 = 8$$

$$-2x_1 + x_2 + x_3 = -8$$

14. Let
$$A = \begin{bmatrix} 3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1 \end{bmatrix}$$

- a) Find the matrix of cofactors
- b) Find the adjoint of A
- c) Using your answers from about (including what you found in problem 10), write down A^{-1}

- 15. Suppose A and B are 3x3 matrices, and that det(A) = 2 and det(B) = -3. Find each of the following:
 - a) det(BA)
 - b) det(3B)
 - c) $det(A^{-1})$
- 16. If A is symmetric, prove $A AA^{T}$ is symmetric.
- 17. Find the area of the triangle whose vertices are (1,2), (3,-4) and (-5,-1)
- 18. Find the equation of the plane passing through the points (2,3,1), (-1,2,0) and (0,2,2)