Linear Algebra Problem Set 2 Solutions
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Check by showing A4~" = I . Details are below.
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4. Assume that there is an inverse and then try and find it. If there is an inverse then:

0 BllX Y B I 0

c D|w z| |0 I
If we can find X, Y, W and Z then we have found the inverse. Do the
multiplication on the left and set it equal to the right.

0X+BW O0Y+BZ| [I 0
{CX+DW CY+DZ}_{O 1}
0OX+BW=I=>BW=I=W=B"
0Y+BZ=0=BZ=0=>2Z=0
CX+DW=0=CX+DB'=0=CX=-DB"' = X=-C"'DB"'

CY+DZ=I=CY+D0=]I=CY=]I=Y=C"
So the inverse is:
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C and B must be invertible.
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a) Let A be a square matrix with an i"™ row of zeros. LetB = A"". Then AB = I . The
i"™ row of AB = i" row of AB

[4BYj =a,b,, +a,b,, +...+a,b, =0b, +0b,, +..+0b, =0 Therefore AB # I
Thus a matrix with a row of all zeros is not invertible.

b) A similar argument is used to show if a matrix has a column of zeros it is not
invertible. Use the fact that B4 = I and reach a contradiction.



b)

d)

False: The zero matrix is a counterexample. Any non-invertible matrix will not
be able to be written as the product elementary matrices.

30 1 0
False: LetE, = {0 J andE, = {3 J are both elementary matrices, but

30
EE, = {3 J 1s not an elementary matrix.

True: Multiplying a row of matrix A by a constant and adding it to another row is
an elementary row operation and can be written as £, 4. If A is invertible then this

product is invertible because an elementary matrix is invertible and the product of
invertible matrices is invertible.

True: AB=0=> A'4B=4"'0=IB=0=B=0

1 -2 -1 b
-4 5 2 b,
-4 7 4 b,

After Gauss Elimination the matrix becomes:
1 0 0 -3b—1/2b,—1/2b,
0 1 0 —4b, — b,
10 0 1 4b —1/2b,+3/2b,
The system is consistent for all b’s so no restrictions.
x, =—-3b, —1/2b, —1/2b,
x, =—4b, — b,
x, =4b, —1/2b, +3/2b,




