
Linear Algebra Problem Set 2 Solutions 
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2.  

  

Check by showing IAA 1 . Details are below. 
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4. Assume that there is an inverse and then try and find it.  If there is an inverse then: 


























I

I

ZW

YX

DC

B

0

00
 

If we can find X, Y, W and Z then we have found the inverse.  Do the 
multiplication on the left and set it equal to the right. 
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So the inverse is: 
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C and B must be invertible. 
 

5.  
a) Let A be a square matrix with an ith row of zeros.  Let 1 AB . Then IAB  . The 

ith row of AB  ith row of AB  
  00...00... 212211  njjjnjinjiji bbbbababaijAB   Therefore IAB   

Thus a matrix with a row of all zeros is not invertible.   
 

b) A similar argument is used to show if a matrix has a column of zeros it is not 
invertible.  Use the fact that IBA  and reach a contradiction. 

 
 



6.  
a) False: The zero matrix is a counterexample.  Any non-invertible matrix will not 

be able to be written as the product elementary matrices. 
 

b) False: Let 
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21EE is not an elementary matrix. 

 
c) True: Multiplying a row of matrix A by a constant and adding it to another row is 

an elementary row operation and can be written as AE1 . If A is invertible then this 
product is invertible because an elementary matrix is invertible and the product of 
invertible matrices is invertible.  
 

 
d) True: 0000 11   BIBAABAAB  

7. 
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After Gauss Elimination the matrix becomes: 
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The system is consistent for all b’s so no restrictions.  
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